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Graphene membranes suspended off electric contacts or other rigid supports are prone to elastic strain,
which is concentrated at the edges and corners of the samples. Such a strain leads to an algebraically varying
effective magnetic field that can reach a few Tesla in submicron wide flakes. In the quantum Hall regime the
interplay of the effective and the physical magnetic fields causes backscattering of the chiral edge channels,
which can destroy the quantized conductance plateaus.
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The isolation of graphene monolayers1,2 and the observa-
tion of the integer quantum Hall effect �QHE� in these
systems3,4 have made graphene a very active research
topic.5,6 The integer QHE in graphene is remarkably robust
and can be seen even at room temperature.7 The traditional
setup to measure the quantized Hall plateaus involves at least
four contacts: source and drain for the current, and two �or
more� side contacts for the voltage. This scheme helps to
eliminate the spurious contact resistance. The much higher
mobility of suspended samples8–10 raised hopes for observ-
ing also the fractional QHE in graphene. Yet demonstrating
even the integer QHE in a four-contact setup proved to be
difficult in such samples. Only recently the integer QHE has
been confirmed in suspended graphene9,11,12 by reverting to a
two-contact scheme. �Similar observations have been made
for bilayers.13� The fractional QHE has also been reported in
these experiments.11,12 An artifact of the two-contact setup is
the suppression of the quantized conductance,11,12 familiar
from the QHE in semiconductors.14–17 The reason why the
nominally superior multicontact scheme is less successful in
suspended graphene has not been fully clarified, except for
one theory that in small samples the side contacts had to be
placed too close to the source and drain, causing admixture
of the longitudinal and Hall conductances.11

In this Rapid Communication we consider a different ef-
fect, which may also contribute to the lack of quantization:
when the graphene sheet is under tension, the side contacts
induce a long-range elastic deformation which acts as a
pseudomagnetic field B�x ,y� for its massless charge
carriers.5,18,19 The tension can be generated either by the
electrostatic force of the underlying gate,20,21 by interaction
of graphene with the side walls,22 or as a result of thermal
expansion.23,24 Our main results are as follows. We show that
B is concentrated near the corners of the contacts where it
exhibits power-law singularities. It decays into the interior of
the sample but for a reasonable 0.1% average strain in a
200-nm-wide strip, B can remain on the order of a Tesla
across its entire width. This leads to backscattering of the
QHE edge states when the real magnetic field B is in a simi-
lar range, causing the erosion of the quantized conductance
plateaus. We give an analytical argument that predicts that
the QHE plateaus are destroyed above a threshold Landau
level index Nc and the corresponding filling factor �c

Nc � 0.07c0
−1/3�kFW�4/3, �c = 4Nc + 2, �1�

where kF is the Fermi momentum in zero magnetic field, W
is the width of the sample, and c0�1 �see below�. We also
compute the conductance numerically. The results for kF
=0.94�106 cm−1 and three representative W’s are shown in
Fig. 1. For these three traces Eq. �1� gives �top to bottom�
�c�38, 16, and 7.6, in agreement with the simulations.
Based on these results, we suggest that observation of the
QHE in suspended graphene with side contacts requires
samples of width W�200 nm. On the other hand, in small
samples one can envision purposely using the pseudomag-
netic field as a new tool for tuning electronic properties of
graphene nanostructures.25–28

We model a suspended graphene sample as an elastic
membrane occupying the rectangle �x��L /2, �y��W /2. The
membrane has the two-dimensional �2D� Young modulus C
=340 N /m�2100 eV /nm2, the Poisson ratio �=0.15, and
the shear modulus �=C / �2�1+����900 eV /nm2. This
membrane is supported by four contacts that have the same
uniform height. We assume that the sample is in the state of
the plain stress, i.e., we ignore the possibility of spontaneous
wrinkling.29 We model the two side contacts as rigid stamps
of width 2l�L centered at the symmetry axis x=0, see
Fig. 2. The remaining parts of the y= �W /2 boundaries are
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FIG. 1. �Color online� Conductance in units of G0=2e2 /h as a
function of the filling factor � for samples of electron density 2.8
�1011 cm−2 and widths W=100, 200, and 400 nm. The side con-
tacts are assumed to have width 2l=30 nm and to pull laterally
outward with the force P=78 nN �c0=1� each.
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assumed to be free of tractions. Each of the stamps pulls
graphene normally outward with the total force P. Initially
we will assume the stamps are rigidly clamped to the sheet.
Later, we will consider other boundary conditions. At the x
= �L /2 sides �the source and drain contacts� the sheet is
clamped: u=v=0. Here u�x ,y� and v�x ,y� are the elastic
deformations in the x and y directions, respectively. At P
=0 the membrane is supposed to be flat and unstressed. We
are interested in the deformation that develops if the force P
is finite.

Our program is as follows. First, we obtain an approxi-
mate solution of the posed elasticity theory problem. Next,
we determine the distribution of the effective vector potential
according to the formulas19,30,31

Ax = 	



a
��xu − �yv�, Ay = − 	




a
��yu + �xv� , �2�

where 
=�c /e is the flux quantum �reduced by 2��, a
=0.14 nm is the separation of the nearest carbon atoms and
	=d ln t /d ln a is the logarithmic derivative of the corre-
sponding hopping integral t�3 eV.

The two Eqs. �2� can be combined using the complex-
variable notation

A = Ax + iAy = �2	
/a��zŪ, U = u + iv , �3�

B = �xAy − �yAx = 2 Im �zA, z = x + iy , �4�

where the bar denotes complex conjugation. The last equa-
tion gives the pseudomagnetic field. As a final step, we cal-
culate numerically the ballistic conductance between the
source and drain contacts assuming the system is subject to
the total magnetic field Btot=B+B.

Our elasticity theory problem does not seem to have an
analytic solution but we can construct an approximate one
from those for a half-plane. Consider therefore a membrane
that occupies the entire lower half-plane y�0. Let its bound-
ary be unloaded except for the interval −l�x� l in contact
with a rigid stamp. The following general representation32 is
valid:

2 �U�z� = ��z� + ��z̄� + �z̄ − z����z�,  =
3 − �

1 + �
, �5�

where function ��z� and its derivative ��z�=���z� are regu-
lar in the complex plane of z with a branch cut �−l , l�. These

functions are determined by the shape of the stamp and the
forces it exerts on the membrane. For a stamp whose base is
straight, parallel to the x axis, and bonded to the membrane
we have32

��z� =
P

2�i
�z + l�−1/2+im�z − l�−1/2−im �6�

with m= �ln � / �2���0.14. The asymptotic behavior of
��z� at large z=rei� is given by

��z� � − 2ic0
�

	

a

r
e−i�, r � l �7�

same as in the Flamant problem: a point force applied to a
2D elastic sheet.33 Here we introduced the dimensionless co-
efficient c0=	P / �4��a�, for convenience. Substituting Eq.
�7� into Eq. �5� and then to Eq. �4�, we find that B decays as
the square of the distance and has a peculiar angular depen-
dence

B�r,�� =
c0


r2 �8 cos 4� − 4 cos 2��, r � l . �8�

On the other hand, near the corners of the stamp, z= � l, the
solution in Eq. �6� is characterized by divergent oscillations.
As discussed in Ref. 32, such oscillations are unphysical.
The linear elasticity theory usually fails at distances where
they supposedly occur. Hence we consider the following al-
ternative to Eq. �6�:

��z� =
P

�i

1

z + 	z2 − l2
=

Pe−�

�il
, � 
 arccos

z

l
. �9�

The corresponding elastic deformation is given by

U1�z� = c0
a

	�� − �̄ +
z

ie� +
2z − z̄

ie�̄
� + const. �10�

This happens to be the exact solution for a frictionless stamp
with a rounded base.32 It is physically relevant, free of diver-
gences, and has the same universal far-field behavior, Eq.
�7�. Since it is the far-field behavior that is important for the
backscattering of the edge states in wide samples, we adopt
Eq. �10� as our basic building block. �The subscript “1” in U1
is to remind us that it is for a single stamp.� We now con-
struct the solution for the original problem simply as the
sum34

U�z� = U1�z − iW/2� − U1�− z − iW/2� . �11�

Let us now estimate the coefficient c0 in Eq. �10�.
Up to logarithmic factors, c0�	eyyW /a, where eyy
= �U�iW�−U�0�� /W is the average strain. We see that the
estimate20 of eyy �10−4 for a sample of size W�1 �m
yields c0�1. In this Rapid Communication we are interested
in samples of smaller size, W�100 nm. However, we think
that c0=1 is still a reasonable number if the pulling force P is
determined by the direct interaction of graphene with the
contacts, not via the intermediary of the gate underneath. The
distribution of the pseudomagnetic field computed for such
c0 and W using Eqs. �3�, �4�, �10�, and �11� is shown in Fig.
3. As one can see, B�1 T. This suggests that strain can

FIG. 2. �Color online� Schematics of the system. The rectangles
at the extremes of the x and y axes are the contacts, which are
attached to a graphene sheet �the central object�. The deformation of
the sheet is strongly exaggerated. The variable shading and honey-
comb lattice are added for aesthetic purposes.
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strongly affect magnetotransport if B is comparable or
smaller than 1 T. A more precise criterion can be derived as
follows.

The suppression of the Nth quantized plateau �centered at
filling factor 4N+2� is due to backscattering between the
counterpropagating edge states of the Nth Landau level. For
N�1 a semiclassical description is valid, in which the edge
states are visualized as channels of width ��
	
 /B that
follow the contours �N=�vF

	2N�Btot�x ,y�� /
=EF, where
vF is the Fermi velocity and EF=�vFkF is the Fermi energy.
In the middle of the Nth quantized plateau EF

=�vF
	�2N+1�B /
, so that the edge states follow the con-

tours

B�x,y� = B/�2N� = const. �12�

These contours eventually terminate at the sample bound-
aries because B decreases away from the stamps. Upon
reaching these termination points, the edge states continue
along the boundaries, as usual �Fig. 3�b��.

On the other hand, near the stamps the edge states veer
into the bulk. The counterpropagating edge states can ap-
proach each other near the saddle points of B�x ,y�. Using
Eq. �8� one can show that for 2l�W the saddle points closest
to the origin are located at y=0 and x= �x0, where x0
=W�1–2 /	5�1/2 /2�0.16 W. Near x=x0 we find

B�x,y� � − c0c1
�x − x0�y/W4, c1 � 2988. �13�

As the real magnetic field decreases, strong backscattering
and therefore the complete destruction of the QHE is pos-

sible if the distance between the counterpropagating edge
states at the saddle point becomes ��. Using Eqs. �12� and
�13�, this condition can be written as 2W2 /�2�	c0c1N. Sub-
stituting �=	2N+1 /kF, we recover Eq. �1�.

Now we discuss our numerical results for the ballistic
conductance G shown in Fig. 1. The calculation was done by
means of the recursive Green’s function technique.35 The
system was treated as a tight-binding model on a honeycomb
lattice with nearest-neighbor hopping t= t0 exp�−	��a� /a�.
Here 	=3.37 �Ref. 25� and �a�z�=U�z+��−U�z� is the
complex-valued distortion of the bond that connects sites z
and z+� in the unstrained lattice. Although we have referred
to the side stamps as the contacts, in our calculations they are
electrically isolated from the system, i.e., G is the conduc-
tance between the source and the drain. Still, our results are
representative of the four-contact conductance because we
made sure that contact resistances of the source and the drain
are small. In the L→� limit where the source and drain are
infinitely far from the strained region these resistances van-
ish. We approached this limit by increasing L while keeping
l and W constant until no significant L dependence of G was
seen.36 As one can see from Fig. 1, the calculations show the
expected erosion of the QHE plateaus as � increases and
confirm the analytical estimate of the threshold filling factor
�c, Eq. �1�.

In conclusion, we want to mention a few caveats: �i� be-
sides the pseudovector potential A, the strain also creates a
scalar one.18 However due to screening, it is likely to be less
important.20,37 �ii� We have assumed that electron transport is
coherent. If dissipation is present, then the two-terminal con-
ductance is better understood in terms of mixing of the Hall
and longitudinal conductivities.11,16,38 This effect is strongly
enhanced in long samples.16 �iii� The point where a contact
ends and a free edge begins can be considered a corner of
angle �=� at which the boundary conditions suddenly
change from clamped to free ones. Divergence of strain near
such corners is well known. The exponent � of the corre-
sponding power law depends on the Poisson ratio � and the
corner angle �. For �=� and �=0.15, Eq. �6� implies �
=1 /2�0.14i. If we had instead �=� /2, it can be shown32,39

that � would be 0.16. In this case, the strain at a distance of
order � from the corner is enhanced with respect to its value
near the center of the flake by a factor of �W /���. For �
�10 nm and W�1 �m this factor is �1.5, which is a siz-
able effect. Accordingly, the recently proposed25–28 “strain
engineering” of graphene electronic devices must either take
into account or take advantage of the strain singularities we
discuss here.

G.L. and F.G. acknowledge support from MEC �Spain�
under Grants No. FIS2008-00124 and CONSOLIDER No.
CSD2007-00010, and by the Comunidad de Madrid, through
CITECNOMIK. E.P. and P.S. acknowledge support from the
European Commission, under Marie Curie Excellence Grant
No. MEXT-CT-2005-023778. M.F. is supported by the NSF
under Grant No. DMR-0706654.

y
(n

m
)

(a)

−200 −100 0 100 200
−100

−50

0

50

100

−1 −0.5 0 0.5 1

−200 −100 0 100 200
−100

−50

0

50

100

x (nm)

y
(n

m
)

(b)

FIG. 3. �Color online� �a� Pseudomagnetic field, in Tesla, in-
duced by two stamps with parameters 2l=30 nm, c0=1 in a sample
of width 200 nm. �b� Effect of this pseudomagnetic field on the
edge states of the N=2 Landau level at B=1 T. The edge states are
depicted as light gray ribbons of thickness ��26 nm. The arrows
indicate their propagation direction.
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